作者 AreLies (AreL1e5)
標題 [開箱] 入門顯示卡 AI 應用性能對決!
時間 Tue Jan  2 00:16:12 2024


CUDA 護城河現階段很深很廣

原文轉自 UNIKO's Hardware
網頁好讀版:https://reurl.cc/RWb8eg
入門顯示卡 AI 應用性能對決!ARC A380 vs GTX 1650 vs RX 6400 簡單測試 | UNIKO's Hardware
[圖]
AI 這個名詞絕對是今年與未來最火熱的議題之一,目前出現各類生成式 AI 應用,例如 ChatGPT 和 Stable Diffusion,為產業帶來全新的進化。為了讓生成式 AI 應用有更高效的產出,AMD、Intel 與 NVIDIA 等晶片廠商皆不斷研發新的軟硬體,以期在這塊市場上獲得更多利潤 ...

 

https://i.imgur.com/usggQmS.jpg
[圖]

AI 這個名詞絕對是今年與未來最火熱的議題之一,目前出現各類生成式 AI 應用,例如 Ch
atGPT 和 Stable Diffusion,為產業帶來全新的發展路線。
為了讓生成式 AI 應用有更高效的產出,AMD、Intel 與 NVIDIA 等晶片廠商皆不斷研發新
的軟硬體,以期在這塊市場上取得更多收益。這次筆者就利用目前持有的三張入門顯示卡 (
ARC A380、GTX 1650 和 RX 6400),來讓讀者了解三家晶片廠商的入門產品能提供多少運算
效能。




GUNNIR ARC A380 Photon 6G OC 外觀

筆者這張 ARC A380 品牌是 GUNNIR,是一張需要外接電源的版本,目前台灣電商平台有銷
售的 SPARKLE ARC A380 ELF 則無需外接電源。兩者主要差別是 GPU 加速頻率。
據 TechPowerUp 資料庫顯示,ARC A380 Photon 6G OC 加速頻率是 2450 MHz,ARC A380
ELF 加速頻率是 2050 MHz,差了 400 MHz。

ARC A380 Photon 6G OC 外盒正面印有產品外觀彩圖,散熱器跟外接電源的設計,讓它看起
來不像入門級顯示卡。右上角標示該卡為 Intel ARC 3 系列成員,支援 XeSS 超採樣技
術和 DirectX 12 Ultimate API。

背面標示該卡需要的環境配備,例如 350W 以上並且有 8 Pin PCIe 電源接頭的電源供應器
、建議 8GB 以上系統記憶體、AMD Ryzen 3000 系列及更新的處理器並能開啟 Resizable
BAR 功能的平台,以及 Windows 10 或 Windows 11 64 位元系統。

https://i.imgur.com/mxcUogL.jpg
[圖]
https://i.imgur.com/XPjzpaP.jpg
[圖]

正面可以看到整體採黑色雙風扇散熱器,背面也有一塊黑色的金屬強化背板,已經是接近中
階顯示卡才有的待遇,整體尺寸不含擋板為 222 x 114 x 42 mm。

https://i.imgur.com/IBg77zj.jpg
[圖]
https://i.imgur.com/ftMSDXH.jpg
[圖]

內部可以看到有一塊不小的鋁擠散熱片,還有一根導熱管。
上方印有 Intel ARC 字樣,8 Pin 電源插座旁還有一塊 GUNNIR  Logo 的發光區域,正常
開機時會發藍光。

https://i.imgur.com/3bHdodZ.jpg
[圖]
https://i.imgur.com/G2AvEDq.jpg
[圖]

在影像輸出方面,具備 1 個 HDMI 2.0 跟 3 個 DisplayPort 2.0 輸出接頭,是新台幣 40
00 左右顯示卡中輸出接頭最多的。

https://i.imgur.com/pmjdbng.jpg
[圖]



硬體規格

處理器:AMD Ryzen 5 5600X (關閉 PBO)
主機板:ASUS PRIME B550M-K/CSM
記憶體:XPG SPECTRIX D60G DDR4 RGB 3000 8GB x2 (OC 3200)
顯示卡:
1.ASUS Dual Radeon RX 6400
2.GUNNIR ARC A380 Photon 6G OC
3.ZOTAC GAMING GeForce GTX 1650 Low Profile儲存:ADATA Legend 710
螢幕TUF Gaming VG27AQL1A ZAKU II EDITION

驅動版本:

ASUS Dual Radeon RX 6400 - AMD Software : Adrenalin Edition 23.11.1

GUNNIR ARC A380 Photon 6G OC - Intel Arc & Iris Xe Graphics 31.0.101.4972

ZOTAC GAMING GeForce GTX 1650 Low Profile - GeForce Game Ready 546.17

作業系統:Windows 11 23H2 (關閉防毒)

電源設定:平衡模式



性能與遊戲測試

3DMark

不免俗的還是要跑一下 Benchmark,首先是 3DMark,Time Spy 中 ARC A380 分數最高,Fi
re Strike Extreme 中則是 RX 6400 表現最佳。

https://i.imgur.com/QGgqja4.png
[圖]
https://i.imgur.com/AzV85eD.png
[圖]

Geekbench

再來是 Geekbench,OpenCL 性能 GTX 1650 具備優勢,Vulkan 則是 RX 6400 領先,而 AR
C A380 在這兩項測試中性能皆居次。

https://i.imgur.com/Pli4iaj.png
[圖]
https://i.imgur.com/Wa5EqHB.png
[圖]

GravityMark Vulkan

GravityMark Vulkan 的顯示卡性能排名與 Geekbench Vulkan 相同,表示 RX 6400 在 Vul
kan API 的效能表現是三者中最強的,只是大家性能差距也不大。

https://i.imgur.com/UKJVTYP.png
[圖]

Counter-Strike 2

簡單試個遊戲,首先是 Counter-Strike 2,由於是入門顯示卡,所以筆者統一使用 1080P
120Hz 低特效全螢幕設定,地圖選 Dust 2 進行 AI 對戰,結果 RX 6400 出現畫面異常不
能玩,只有在未設定全螢幕前的視窗化狀態下正常,因此 RX 6400 在這項沒有成績。GTX 1
650 在 CS2 遊戲測試中 AVG FPS 最高。

https://i.imgur.com/i9dhqCL.png
[圖]

Overwatch 2

接著測 Overwatch 2,一樣是 1080P 120Hz 低特效全螢幕,關閉動態渲染比率,遊戲解析
度設定 100%,最大幀率 300,地圖 66 號公路,AVG FPS 由 RX 6400 勝出。

https://i.imgur.com/yEqZ53l.png
[圖]



AI 相關應用測試

Stable Diffusion WebUI

現在進入重頭戲,先來試個最常用的本地 AI 應用 Stable Diffusion WebUI,模型使用 St
able Diffusion V1.5,GTX 1650 用的是AUTOMATIC1111 的 Stable Diffusion web UI,
版本 1.6.0;ARC A380 用的是 openvinotoolkit 的 Stable Diffusion web UI,版本 1.
6.0;RX 6400 使用 Nod.AI 專為 AMD RDNA 顯示卡最佳化的 Shark (Vulkan API),版本
 20231009.984。測試使用的設定和 Prompt 跟「Stable Diffusion AI 生圖加速新利器!
透過 LCM LoRA 大幅提升生圖速度」這篇*註1 相同,測試結果顯示 Intel 的 OpenVINO

加速相當出色,速度讓對手看不到車尾燈。

註1:https://reurl.cc/E4ZWYK
Stable Diffusion AI 生圖加速新利器!透過 LCM LoRA 大幅提升生圖速度 | UNIKO's Hardware
[圖]
Stable Diffusion 讓使用者只要有 4G VRAM 以上的顯示卡,都能在本地機器上使用 AI 繪圖,但顯示卡如果不夠高階,圖片產生速度就會受影響,因此一直有人在研究如何縮短圖片產生所耗費的時間。Latent Consistency Models (LCM) 是一款基於 Stable D ...

 

https://i.imgur.com/ea2bs1W.png
[圖]

本地 LLM 大型語言模型運作效能測試

筆者使用 KoboldCpp V1.5 載入 Taiwan-LLM-7B-v2.1-chat-Q4_K_S.gguf 模型進行測
試,設定只更改 Presets,GTX 1650 選擇 cuBLAS,ARC A380 和 RX 6400 選擇 CLBlast,
詢問的問題是「什麼是LLM」,連續三次。圖片排序左至右依序是 GTX 1650、ARC A380、RX
 6400,測試結果顯示 GTX 1650 效率最高,RX 6400 次之。


https://i.imgur.com/kkTADmY.jpg
[圖]
https://i.imgur.com/9UBUEYp.jpg
[圖]
https://i.imgur.com/Y38feG5.jpg
[圖]

AI 影片放大補幀效能測試

測試工具使用 Waifu2x-Extension-GUI 版本 3.108.01, 放大工具選擇 Real-CUGAN ncn
n Vulkan,放大倍率為預設的 2X,補幀工具選擇 RIFE ncnn Vulkan,針對各顯示卡開啟硬
體加速選項,圖片儲存格式用 WebP,圖片品質設 80,測試的影片來源 (360P) 可按此下載
*註2。
此項測試由 GTX 1650 拿下冠軍,RX 6400 獲得亞軍。

註2:https://reurl.cc/mrv77A

https://i.imgur.com/My89rrL.png
[圖]



結論

以一般娛樂用途而言,在新台幣 4000 這個價位上,三款顯示卡的效能其實差不多,要是真
的想跑 AI 應用,那麼 NVIDIA 的顯示卡絕對是目前最穩的選擇,AI 相關應用軟體基本上
都支援 CUDA,可以讓你獲得下載即可用的體驗。


在本次測試結果中,AMD 顯示卡雖然性能表現不如 NVIDIA (這邊僅考慮 Windows 平台) ,
透過 OpenCL 或 Vulkan API 還是可以獲得一定程度的效果。另外,AMD 的 ROCm 雖然說已
登陸 Windows 平台,但筆者使用 KoboldCpp 的 ROCm 版本只能正常開啟程式,載入模型

後就自己關閉了,而 Shark 從 Vulkan 改為 ROCm 會顯示錯誤出不了圖,因筆者手上沒 AM
D 更高階的顯示卡 (本身偏好用無須外接電源的顯示卡),不曉得是不是 VRAM 不夠所以跑
不了,或是有其他原因,也希望能在 Windows 系統上看到更多最佳化解決方案出現。


至於 Intel ARC 顯示卡在 AI 的發展,只要 Intel 持續積極對社群 / 開發者進行資源投
入,以本次 Stable Diffusion WebUI 測出來的效率來看,在 Windows 系統的未來令人期
待。


筆者並非 AI 相關產業人員,對這方面並不熟悉,若是大家有更準確且方便比較性能的測試
方法 / 工具歡迎提出,希望是以簡單安裝、容易使用且免費或開放原始碼,能夠在 Window
s 系統正常運作為主。關於 AI 應用測試結果僅供參考,測試期間為 11 月底至 12 月初,
有機會且剛好有硬體的話會繼續測試一些東西給大家看。



喜歡我們的文章歡迎分享原文
也可以UNIKO's Hardware 粉絲專頁並設為最愛,或是到 UNIKO's Hardware 官方網頁逛逛
,觀看各種開箱及測試!



--
Sent from my Nothing A065

 PiTT // PHJCI

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.238.40.102 (臺灣)
※ 作者: AreLies 2024-01-02 00:16:12
※ 文章代碼(AID): #1bakLEw2 (PC_Shopping)
※ 文章網址: https://www.ptt.cc/bbs/PC_Shopping/M.1704125774.A.E82.html
※ 編輯: AreLies (36.238.40.102 臺灣), 01/02/2024 00:17:17
abc21086999: 破產版AI1F 114.36.220.23 台灣 01/02 00:17
Koogeal: 雜魚們等級對決是嗎?2F 125.227.172.24 台灣 01/02 00:33
tint: 5000價位的話 2月會出3050 6GB版 免外接電卡3050 6GB對比這幾張多了Tensor Core
相對比較的話 3050 6GB好像也還行XD3F 218.187.85.131 台灣 01/02 01:07
其實現行的3050 8G會更好用 只是價格太貴
捏上3060 12G還比較有CP值
※ 編輯: AreLies (36.238.40.102 臺灣), 01/02/2024 01:44:46
jaffson8909: 推6F 223.136.93.175 台灣 01/02 02:09
smallreader: 想知道入門顯卡跟SoC的NPU能比嗎7F 114.27.27.55 台灣 01/02 02:13
wsdykssj: APU(780M)呢? 完全不能打?8F 119.14.85.132 台灣 01/02 02:27
oopFoo: Arc a380也有xmx(tensor core)。
intel/amd的igpu/dgpu跑LLM選擇MLC會快很多。OpenCL基本上優化的不夠。MLC用vulkan效果更好。vLLM看起來也蠻有潛力的。
koboldcpp/llamacpp主要是普及,易入門,cpu/gpu自動幫你配好,N家優化極好。
LLM現在的發展極快,變化也很快,希望明年不對,今年上半年有比較明顯的結果出來,NPU目前支援都不好。AMD的NPU鎖在onnx後面支援可能更難.9F 219.70.128.119 台灣 01/02 06:55
guezt: 顏色選擇好怪啊 一般是用i藍 n綠 A紅吧19F 39.9.34.112 台灣 01/02 07:36
yenchieh1102: 推比較20F 111.71.34.185 台灣 01/02 07:50
IKnowWhy: 與其買入門卡,不是用內顯就好?21F 27.52.134.40 台灣 01/02 07:56
Sartanis: VRAM入門感覺要12GB吧?22F 118.166.134.64 台灣 01/02 09:59
iorittn: 訓練模型要12g,畫圖不用23F 223.138.55.131 台灣 01/02 13:49

--
作者 AreLies 的最新發文:
點此顯示更多發文記錄