顯示廣告
隱藏 ✕
※ 本文為 ChiChi7.bbs. 轉寄自 ptt.cc 更新時間: 2015-09-18 23:08:26
看板 Gossiping
作者 ERT312 (312)
標題 Re: [問卦] 如何證明1+1=2
時間 Tue Sep 15 04:47:17 2015


自然數有三種不同的欣賞方式
1.憑藉直覺、直觀的方式
2.Peano公理化的方式
3.藉由集合論建構的方式


★★★直觀生成★★★
這種方式也是小學老師教我們的方式
透過直觀把自然數跟具體的事物連結起來
這種能力小孩子就有了
甚至一些比較聰明的動物如海豚、黑猩猩也有
所以自然數的概念不是人類獨有
至於自然數的運算規則,人類很早就熟悉了
但是到了十九世紀初,才有數學家概括出這些法則
① a+b 是一個數 (存在性)
② a+b 單值     (唯一性)
③ a+b = b+a    (交換律)
④ (a+b)+c = a+(b+c)  結合律
⑤ a*b 是一個數
⑥ a*b 單值
⑦ a*b = b*a
⑧ (a*b)*c = a*(b*c)
⑨ a*(b+c) = a*b + a*c  分配律
證明這些法則也是透過直觀的自然數概念
與直觀的加法概念、直觀的乘法概念
例如我們把每個自然數對應到如下的具體事物
1→●
2→●●
3→●●●
4→●●●●
5→●●●●●
6→●●●●●●
..............

其實就是數(ㄕㄨˇ)數(ㄕㄨˋ)的能力
加法的概念就是把對應的事物合在一起數(ㄕㄨˇ)
例如③ a+b = b+a    交換律的證明

●●● + ●●●●●
   a          b
把你的螢幕(或是頭)轉180度
上面的圖會變成

●●●●● + ●●●
    b           a
這就是加法交換律

④ (a+b)+c = a+(b+c)  結合律

●●●+●●●●●+●●●●
   a        b        c
Step1.轉180度變成

●●●●+●●●●●+●●●
   c         b        a

Step2.前面兩個轉180度,第三個不轉變成
(注意:圖像的運算(ㄕㄨˇㄕㄨˋ)都是由左往右
也就是 (a+b)+c 轉一下變成 (c+b)+a )

●●●●●+●●●●+●●●
    b          c       a

Step3.前面兩個先算出來,第三個保留

●●●●●●●●● +●●●
       b+c            a

Step4.再轉180度

●●●+ ●●●●●●●●●
  a             b+c
這就是加法結合律

乘法的概念則是"幾倍"的概念
這個概念海豚、黑猩猩可能沒有
如果你有認識的海豚有的話請說一下

⑦ a*b = b*a

●●●●● 的 ●●● 倍 =  ●●●●●      每層a個
     a           b         ●●●●●      有b層
                           ●●●●●

把圖轉九十度後變成

●●●            每層b個
●●●
●●●    b*a     有a層
●●●
●●●

⑧ (a*b)*c = a*(b*c)

用"三維的體積"去想也很直觀
長*寬*高的概念,"長的寬倍的高倍"
翻轉立方體

⑨ a*(b+c) = a*b + a*c  分配律

   每層a個

 ●●●●●●
 ●●●●●● b層
 ●●●●●●
 ●●●●●●
 ●●●●●● c層
 ●●●●●●

把b,c層劈開變成

   每層a個

 ●●●●●●
 ●●●●●● b層
 ●●●●●●
 ●●●●●●

 ●●●●●● c層
 ●●●●●●

除了順序(比大小)的規則之外
我們所有自然數的運算規則就是上面九條
雖然看起來很像體的公理
但是我們自然數觀點都跟具體事物做連結
"證明"也是透過具體的圖像
所以並不能看做公理

第二種看法才是公理化的方法
這種觀點不再依賴直覺
也不能跟具體的圖像做連結
必須捨棄直覺,讓邏輯做主導

公理化一開始必須有一些無法定義的東西
在這裡是 1、N、σ 三個原始的物件
這三個東西是什麼,只能透過公理去理解
現代的公理化方法都這樣
例如集合論的公理化不能定義也無法定義集合是什麼
    機率論的公理化不能定義也無法定義機率是什麼
    歐氏幾何公理化不能定義點、線、面是什麼

    (所以歐幾里得的幾何原本用現在的觀點來看
     還不是真正的公理化,要等到David Hilbert,
     歐幾里得嘗試去說明點線是什麼,
     例如他說點是no part,線沒有寬度等等
     結果反而引起更多問題)
我們做推論時,必須假裝我們不知道自然數是什麼
也就是僅依靠邏輯跟公理
所以在看下去之前
請跟直觀、直覺斷開連結 ✂✂✂✂✂✂✂✂✂✂✂

★★★Peano公理★★★

公理❶ ☞ N is a set with 1∈N and σ: N → N is a function.
這個公理是說 N 是一個集合, 而且 1 屬於 N
並且 σ: N → N 是一個 N 對應到 N 的函數
因為 N 裡面至少有 1, 從而會有 σ(1), σ(σ(1)), σ(σ(σ(1))),...
因此我們就可以作一些定義

定義Ⓐ ☞
σ(1) = 2
σ(2) = 3
σ(3) = 4
σ(4) = 5
σ(5) = 6
σ(6) = 7
σ(7) = 8
σ(8) = 9

但是 N 也可能只有一個元素 1
例如 N={1}, 1=2=3=4=5=6=7=8=9
換句話說, 整個自然數世界只有 1
為了避免這種無聊的狀況發生
我們需要其他的公理

公理❷ ☞ The range of σ does not contain 1.
  亦即 ☞ ┐( 1 ∈ ran σ )
    或 ☞ ∀x ∈ N, σ(x)≠1

因此 σ(1) = 2 ≠ 1
這個公理可以一生二, ☯生兩儀
然而整個自然數世界仍可能只有兩儀

例如 N={1,2}, σ(1)=2, σ(2)=2
即 2=3=4=5=6=7=8=9

Peano 說要有三寶, 所以有了以下公理

公理❸ ☞ The function σ: N → N is injective.
  亦即 ☞ ∀x,y ∈ N, ( σ(x)=σ(y) → x=y )
    或 ☞ ∀x,y ∈ N, ( x≠y → σ(x)≠σ(y) )

這個公理說 1≠2 → σ(1)≠σ(2) → 2≠3
又 3=σ(2)≠1  (公理❷)
所以三寶誕生了
同樣地,我們也可以證明1,2,3,4兩兩不相等
三寶生四象、八卦、......

看一下怎麼證明 3≠8
定理①: 3≠8
證明: 若 3=8, 根據定義Ⓐ, σ(2)=σ(7); 根據公理❸, 2=7;
      根據定義Ⓐ, σ(1)=σ(6); 根據公理❸, 1=6;
      根據定義Ⓐ, 1=σ(5) ; 但是根據公理❷, σ(5)≠1;
      得到矛盾, 所以 3≠8

這樣看來我們要的"自然數"都有了
為什麼還要最後一個公理?
因為不但自然數有了,可能連其他的數也跑進來了
例如:
N = {1,2,3,4,5,......}∪{1.1, 2.1, 3.1, 4.1, .......}
σ的定義就像+1 : n → n+1
我們還沒有正式定義加法
所以這裡只是大概的說明
以上的 1、N、σ,完全符合公理❶❷❸

公理❹ ☞ 若 S ⊂ N 並且
          1∈S and ∀x (x∈S → σ(x)∈S )
          則 S = N

公理❹能夠排除掉上面的例子
我們再定義加法跟乘法

定義Ⓑ ☞
① ∀x∈N , x+1 = σ(x)
② ∀x,y ∈ N, ( x + σ(y) = σ(x+y) )

③ ∀x∈N , x*1 = x
④ ∀x,y ∈ N, ( x*σ(y) = x + x*y )

我們可以證明第一種觀點的運算規則
例如加法結合律 (a+b)+c = a+(b+c)
證明:
Let S={c∈N : ∀a,b ∈ N, (a+b)+c = a+(b+c)}
要用公理❹(數學歸納法)
S ⊂ N

驗證 1∈S
(a+b)+1 = σ(a+b)  定義①
= a + σ(b)        定義②
= a+(b+1)          定義①

對任意的a,b
(a+b)+σ(c) = σ((a+b)+c)   定義②
=σ(a+(b+c))                假設 c∈S
=a+σ(b+c)                  定義②
=a+(b+σ(c))                定義②
所以σ(c)∈S
QED

其他的規則都可以由這四個公理加定義推導(以下省略)

直觀生成的自然數,我想到Kronecker的一句話:
「上帝創造了自然數,其餘是人的工作」
所以什麼是自然數?
請去問上帝,因為自然數是祂創造的
祂也會告訴你1+1等於多少

Peano公理化的自然數是什麼?
佛曰:「不可說」
無法定義,你覺得像什麼就是什麼
1+1=2只是很簡單的證明,不必靠上帝

最後第三種觀點

★★★集合論的觀點★★★
也就是數學板的第一篇 (朝聖時間)
集合論有不少版本 ZFC,NBG 等等
ZFNBG 都是人名
Zermelo, Fraenkel
Neumann, Bernays, Godel
數學板的第一篇是 NBG 式的,它有 universal class
ZFC 沒有,ZFC 只有 set
但 NBG 描述 sets 的能力跟 ZFC 一樣
另外還有 Russell 的 Type theory
他們採用不同的方式避開羅素悖論發展集合論
羅素說: 自己的悖論,自己救。
羅素悖論大家應該不陌生
就羅素用很樸素、自然、不華麗的方式定義了羅素集
接著馬上在邏輯上證明它不存在
所以對於原本認為安全的集合構造方法產生危機
簡單講就是不能讓公理造出羅素集
這裡有一個觀念就是定義是一回事
證明定義出來的東西存在是另一回事
就好像你高興的話也可以定義你心目中的「鬼」是什麼樣子
但是祂存不存在是另一回事

拿前面Peano觀點的定義Ⓐ來說
定義出來的 2、3、4、5、....
他們的存在是公理❶所保證,不必靠上帝

最後如果你只關心自然數的集合論
有一個比較小的版本,針對自然數的集合論
General set theory
https://en.wikipedia.org/wiki/General_set_theory
它略去了很多NGB或ZFC的公理
只保留了足夠發展出自然數的公理


--
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 218.164.171.58
※ 文章代碼(AID): #1Lzp9QTG (Gossiping)
※ 文章網址: https://www.ptt.cc/bbs/Gossiping/M.1442263642.A.750.html
SRNOB: End1F 09/15 04:47
mengertsai: 靠盃喔…意圖使人睡過頭2F 09/15 04:50
incandescent: 所以一加一等於二照你說的根本不用證明 這是直觀問3F 09/15 05:01
incandescent: 題 因為人類數數就是1個,再一個就是2個
AvalonXD: 深夜推大大5F 09/15 05:03
incandescent: 然後這不用數學習如來證明 你阿嫲就會了6F 09/15 05:04
tfoxboy: 數學王阿7F 09/15 05:06
cloudwolf: 看八卦 學數學8F 09/15 05:06
※ 編輯: ERT312 (218.164.171.58), 09/15/2015 05:08:10
zuozuomu: .等等看9F 09/15 06:32
IPena: 復10F 09/15 06:39
TunaOnline: 我第一行的1屬於N看好久 想說1屬於自然數不是廢話嗎XD11F 09/15 06:52
所以說要跟第一種概念斷開連結 斷開鎖鏈呀
要假裝你都忘了
jodojeda: 每期的大樂透中獎號碼也都是自然數 你用哪種方式欣賞12F 09/15 06:56
我會的話,還會在這裡發廢文 ☎✉✂☠☁✈
amateuruser: P定理根本……猛13F 09/15 06:56
requiescatjr: 哇!趕快推文不然會被當白癡14F 09/15 07:08
Rex1009: 拯救八卦失眠板眾作戰15F 09/15 07:13
Benbenyale: 挖 推16F 09/15 07:18
gn1964626: 看完後我失眠既然好了。。。多謝大大17F 09/15 07:20
cubegaga: 看完覺得有學到東西 推推18F 09/15 07:31
rexx0520: 推19F 09/15 07:31
cc02040326: 看不懂喇幹20F 09/15 07:46
agong: 鬼21F 09/15 08:09
redrainze: 嗯嗯 這論點雖然入門但方向是正確的22F 09/15 08:11
※ 編輯: ERT312 (218.164.76.236), 09/15/2015 08:20:09
Luluemiko: 認真給推,☁☁☁☁☁23F 09/15 08:31
mimiLin5566: 深受打擊24F 09/15 08:44
kevin4201153: 文組看不懂啦幹25F 09/15 08:51
ERT312: 第一種衣錠看得懂,第二種文組仔細看應該也看得懂26F 09/15 09:17
double21: 我的失眠治好了!!!!27F 09/15 09:17
sbflight: 這什麼碗糕=..=28F 09/15 09:34
name2name2: 推29F 09/15 09:59
sparta40: 細心解說 給個推30F 09/15 10:23
ptttea: 推31F 09/15 10:25
diablo81321: 所以證明1+1等於2是一個把直觀現象形而上化的工作?32F 09/15 10:48
hungpeter: 可以不要這麼專業嗎33F 09/15 10:48
markban: 好猛34F 09/15 12:33
saedn: 你是神!! 這篇好難懂 OAQ~ 太強大了!!35F 09/15 12:34
chaige: 跟我想得差不多36F 09/15 14:09
jason860421: 推37F 09/15 15:28
kuromu:38F 09/15 18:08
info2000: end....zZ39F 09/15 19:42
sdf611097: 好猛40F 09/15 21:44
sktynnic3421: 推 太猛啦41F 09/16 09:47
l95566: 無聊 數學家怎麼不都去吃大便 幹42F 09/16 16:38

--
※ 看板: Gossiping 文章推薦值: 0 目前人氣: 0 累積人氣: 3312 
※ 本文也出現在看板: layzer chinagogoya 以及 1 個隱藏看板
作者 ERT312 的最新發文:
點此顯示更多發文記錄
分享網址: 複製 已複製
1樓 時間: 2015-09-16 04:50:34 (美國)
  09-16 04:50 US
 ☎✉✂☠☁✈
chinagogoya 轉錄至看板 chinagogoya (使用連結) 時間:2015-09-16 14:27:13
2樓 時間: 2015-09-19 01:42:57 (澳大利亞)
  09-19 01:42 AU
第三種真的是天書 我敢說大多數working mathematicians不完全懂ZFC
r)回覆 e)編輯 d)刪除 M)收藏 ^x)轉錄 同主題: =)首篇 [)上篇 ])下篇