作者 cmrafsts (喵喵)
標題 Re: [閒聊] 日本中學生數學這麼難的嗎?
時間 Tue Mar  7 03:30:14 2023


※ 引述《arrenwu (不是綿芽的錯)》之銘言:
: ※ 引述《Vulpix (Sebastian)》之銘言:
: : 推 CATALYST0001: substitution高中有教吧?還是那是我以前補習班才    03/06 23:39
: : 沒有。我只在很舊的高職工程數學上看過。
: : → CATALYST0001: 有學到?反而是ln 跟e不曉得為什麼不教              03/06 23:39
: : 我也覺得該教,但實際上一教下去就會牽出一大串東西。
: : 最舒適的流程應該是用積分定義 ln,證明他滿足對數律就可以說明他是一種 log。
: : 然後帶出他的底數 e,定下自然對數底這個稱呼。
: : 畢竟常用的兩個極限定義都……很奇怪啊。
: : (1+1/n)^n 還可以用複利,Σ1/n! 要從無窮級數的積下手來談吔。
: 只是要教 (1) e 常數的定義 和 (2) 對應的指數函數不難啦
: 問題在教了要幹嘛?
: 教會學生怎麼對 1/x 積分?
:         x
: ln x = ∫du/u 這個定義是證明起來方便,但動機看起來超奇怪
:         1
: 你沒事定義一個這樣的函數幹嘛?打手槍?
: 比較易懂的做法是
: 1. 定義常數 e
: 2. 定義 lnx 為指數函數的 e^x (簡單的說就只是某個特別的對數函數)
: 3. 透過反函數的微分性質去得出對 lnx 微分會得到 1/x
: 但第三步會得要先得到 「對e^x微分會等於e^x」
: 這實際上也才是為什麼 e 重要
: 但是啊,你怎麼突然會關心起「微分變成自己的東西」?
: 這答案很標準,就是微分方程,比如 y'(x) = ay(x)
: 微方可以說是人類科學發展過程中數一數二重要的里程碑
: 不過我們高中教育從來沒有想要把微方的概念代入教材裡面
: 而如果跳過這些,純粹就告訴學生「幹 別管有啥用,給我全部接受、算就對了」
: 這很容易造就一堆覺得莫名其妙、然後什麼都沒學會的學生

先教積分在教微分的方法多見於一些數學系才會用的教材,其便利之處在於處理積分比

處理微分更容易。所有數學系畢業的人都知道Lebesgue定理,但是知道絕對連續隱含微分

幾乎處處存在且微積分基本定理成立的人是為數不多的存在。在指對數函數這邊會寫出


的事情是,用1/x的定積分定義log(x)讓你直接得到log和其反函數都無窮可微,但是先寫

出指數函數時你必須要了解他是一個連續甚至可微的函數,那就得動手算一些極限,衍生

出是要算下去讓課堂變無聊還是要跳過去讓學生變得迷惑的兩難。



另一方面,你寫出的微分方程固然可以用瞪出一個解和存在唯一定理解,但是其正規解法

難道不是分離變數後變成a/y對y積分並取反函數嗎?這也給出一個為什麼要會算這個積分

的敘事。在純數學裡,1/x的積分是重要的積分,log函數也是偉大的函數。用途和趣味性

不見得會輸給指數函數,只是生不出剛學微積分的人能理解的動機而已。


--
(如果你是一座島的島主 那這座島上最重要的守則是什麼?)

"每位滿20歲的國民都要會Galois theory"

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 78.94.133.138 (德國)
※ 作者: cmrafsts 2023-03-07 03:30:14
※ 文章代碼(AID): #1a1ZzIDK (C_Chat)
※ 文章網址: https://www.ptt.cc/bbs/C_Chat/M.1678131026.A.354.html
※ 同主題文章:
Re: [閒聊] 日本中學生數學這麼難的嗎?
03-07 03:30 cmrafsts
zax8419: 這個很有說服力 不過你瞪出解的程度不是一般人能做到的阿1F 03/07 03:35
xanxus27: 我大學修過後就不想碰了 請不要喚醒我記憶(頭痛2F 03/07 03:36
aarzbrv: 看到幾乎實在心癢癢很想知道例外的函數的密度(嘖嘖)…(先教積分也是為延後無窮大小這個教師債務吧?XD)3F 03/07 03:57
dzwei: 正規的教法是 極限-連續-微分-微積分基本定理-積分,然後是partal 微分,多重積分,這樣差不多就理工類兩學期了,剩下的丟給工數。其實微積分這種拋棄舊的數學思想蠻好玩的5F 03/07 04:17
aarzbrv: 忘了以前哪篇心得文看過美國好像有大學是要求教師避開以(ε, δ)定義函數的極限,如果遇到上位者如此要求的話,
該怎麼辦呢?還是先岔題幾個小時教非標準分析(哭哭)?8F 03/07 04:43

--
作者 cmrafsts 的最新發文:
點此顯示更多發文記錄